Segmentation of Partially Overlapping Convex Objects Using Branch and Bound Algorithm

نویسندگان

  • Sahar Zafari
  • Tuomas Eerola
  • Jouni Sampo
  • Heikki Kälviäinen
  • Heikki Haario
چکیده

This paper presents a novel method for the segmentation of partially overlapping convex shape objects in silhouette images. The proposed method involves two main steps: contour evidence extraction and contour estimation. Contour evidence extraction starts by recovering contour segments from a binarized image using concave contour point detection. The contour segments which belong to the same objects are grouped by utilizing a criterion defining the convexity, symmetry and ellipticity of the resulting object. The grouping is formulated as a combinatorial optimization problem and solved using the well-known branch and bound algorithm. Finally, the contour estimation is implemented through a non-linear ellipse fitting problem in which partially observed objects are modeled in the form of ellipse-shape objects. The experiments on a dataset of consisting of nanoparticles demonstrate that the proposed method outperforms four current state-of-art approaches in overlapping convex objects segmentation. The method relies only on edge information and can be applied to any segmentation problems where the objects are partially overlapping and have an approximately convex shape.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Concave Point Detection Methods for Overlapping Convex Objects Segmentation

Segmentation of overlapping convex objects has gained a lot of attention in numerous biomedical and industrial applications. A partial overlap between two or more convex shape objects leads to a shape with concave edge points that correspond to the intersections of the object boundaries. Therefore, it is a common practice to utilize these concave points to segment the contours of overlapping ob...

متن کامل

Segmentation of Partially Overlapping Nanoparticles Using Concave Points

This paper presents a novel method for the segmentation of partially overlapping nanoparticles with a convex shape in silhouette images. The proposed method involves two main steps: contour evidence extraction and contour estimation. Contour evidence extraction starts with contour segmentation where contour segments are recovered from a binarized image by detecting concave points. After this, c...

متن کامل

A Simulated Annealing Algorithm for Multi Objective Flexible Job Shop Scheduling with Overlapping in Operations

In this paper, we considered solving approaches to flexible job shop problems. Makespan is not a good evaluation criterion with overlapping in operations assumption. Accordingly, in addition to makespan, we used total machine work loading time and critical machine work loading time as evaluation criteria. As overlapping in operations is a practical assumption in chemical, petrochemical, and gla...

متن کامل

Segmentation Improvement of High Resolution Remote Sensing Images based on superpixels using Edge-based SLIC algorithm (E-SLIC)

The segmentation of high resolution remote sensing images is one of the most important analyses that play a significant role in the maximal and exact extraction of information.  There are different types of segmentation methods among which using  superpixels is one of the most important ones. Several methods have been proposed for extracting superpixels. Among the most successful ones, we can r...

متن کامل

Multi-instance Methods for Partially Supervised Image Segmentation

In this paper, we propose a new partially supervised multiclass image segmentation algorithm. We focus on the multi-class, singlelabel setup, where each image is assigned one of multiple classes. We formulate the problem of image segmentation as a multi-instance task on a given set of overlapping candidate segments. Using these candidate segments, we solve the multi-instance, multi-class proble...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016